• Home
  • About Us
    • Member Directory
    • Contact Us
  • Blogs
    • Scientific Blogs
      • Technology
      • Environment
      • Health
    • Infinity Explorer
    • Traveler Book
    • Life Around
  • Publication
  • Scientific Advisory
  • Project
    • Future Projects
    • Ongoing Projects
    • Previous Projects
  • Services
    • Language Programs
    • Latest Software
    • Environmental Consultancy
    • Internship
    • Exercise
  • Career
    • Masters
    • PHDs
    • Postdoctorals
    • Travel Grants
    • Others

Hepatitis: 3D structure determination of the ‘gateway’ to the liver

Hepatitis: 3D structure determination of the ‘gateway’ to the liver

gateway to the liver

Share:

Twitter
Tweet
LinkedIn
Share
Facebook
fb-share-icon
WeChat
Follow by Email
Hardin Bitsky

Hardin Bitsky

Mr. Hardin, a future doctor of pharmacy, provides services as a content writer for scientific and technical niches.

Though an essential gateway to the liver, NTCP had not been well described until now. Na+-taurocholate co-transporting polypeptide (NTCP) is a protein located exclusively in the membrane of liver cells (or may be gateway to the liver) that enables recycling of bile acid molecules. It is also the cellular receptor of human hepatitis B and D viruses (HBV/HDV). A better understanding of NTCP could enable the development of treatments specifically designed for the liver, and to fight HBV and HDV infection.

NTCP is a difficult protein to study. It weighs only 38 kilodaltons (kDa), whereas cryo-electron microscopy, the technology used to study this type of molecule, only works for molecules weighing more than 50 kDA. The challenge was therefore to “enlarge” and stabilize it.

To do this, teams from French and Belgian laboratories developed and tested a collection of antibody fragments targeting NTCP. The 3D structures of the resulting complexes were determined using cryo-electron microscopy, and different antibody fragments stabilized and revealed several forms of NTCP.

The research team was able to describe two essential NTCP conformations: one in which the protein opens a large membrane pore to bile salts, to which HBV and HDV can bind, and a second, “closed” conformation, that prevents recognition by the viruses.

The first, “open” conformation is very surprising, as no other known molecular transporter forms such a “wide open” pore. In turn, the second conformation could help with finding antiviral molecules that prevent HBV and HDV infection. The research team intends to continue its work to fully elucidate the functioning of NTCP.

The results appear in Nature.

You may like to read: 

Hepatitis Outbreak In Children: Explainer On Adenovirus Type 41, The Possible Culprit

Quantum mechanics could explain why DNA can spontaneously mutate

PrevPreviousResearchers find way to form diodes from superconductors
NextLaser bursts drive fastest-ever logic gatesNext

LATEST Blogs

Breakfast and health problems

Skipping Breakfast May Increase a Child’s Risk of Psychosocial Health Problems

September 7, 2022
James webb telescope

NASA’s Webb Space Telescope Captures a Cosmic Tarantula

September 7, 2022

Worse Than Smoking – Bad Sleep Can Worsen Lung Disease

August 31, 2022
Nanotechnology

Dr. Muhammad Adeel Addressed the International Con-ference as keynote speaker

August 23, 2022
Benefits of Mushrooms

Top 10 Health Benefits of Mushrooms, the Ultimate Superfood

August 18, 2022

New Way Invented To Produce Oxygen on Mars for Future Explorers

August 18, 2022

Evidence of Unprecedented Modern Sea-Level Rise Found in Ancient Caves

August 18, 2022

Research Shows Salt Substitutes Lower Risk of Heart Attack/Stroke and Death

August 13, 2022
covid symptoms

Hair Loss and Sexual Dysfunction Join Fatigue and Brain Fog in List of Long COVID Symptoms

August 13, 2022
protein

Most People Are Eating Too Much Protein – And It Has Serious Consequences

August 13, 2022

Categories

  • Scientific Blogs
  • Infinity Explorer
  • Traveler Book
  • Life Around

If you have tried to make a difference and you believe you deserve to be acknowledge, then please submit your story to us

Subscribe

Virtual Green Innovation Hub (VGI-H) is an emerging platform for young researchers which works as a bridge between You and the society.

Useful Links

Home
About us
Blogs

Subscribe Now

Don’t miss our future updates! Get Subscribed Today!

Copyright ©2022 Virtual Green Innovation Hub. All Rights Reserved.

Don’t miss our future updates. Get Subscribed Today!