• Home
  • About Us
    • Member Directory
    • Contact Us
  • Blogs
    • Scientific Blogs
      • Technology
      • Environment
      • Health
    • Infinity Explorer
    • Traveler Book
    • Life Around
  • Publication
  • Scientific Advisory
  • Project
    • Future Projects
    • Ongoing Projects
    • Previous Projects
  • Services
    • Language Programs
    • Latest Software
    • Environmental Consultancy
    • Internship
    • Exercise
  • Career
    • Masters
    • PHDs
    • Postdoctorals
    • Travel Grants
    • Others

Mapping study yields novel insights into DNA-protein connection, paving way for researchers to target new treatments

Mapping study yields novel insights into DNA-protein connection, paving way for researchers to target new treatments

Share:

Twitter
Tweet
LinkedIn
Share
Facebook
fb-share-icon
WeChat
Follow by Email
Hardin Bitsky

Hardin Bitsky

Mr. Hardin, a future doctor of pharmacy, provides services as a content writer for scientific and technical niches.

A new genetic mapping study led by researchers at the Johns Hopkins Bloomberg School of Public Health traces links between DNA variations and thousands of blood proteins in two large and distinct populations. The results should help researchers better understand the molecular causes of diseases and identify proteins that could be targeted to treat these diseases.

The study included more than 9,000 Americans of European or African ancestry, and generated maps of DNA-to-protein links for both groups. The study is thought to be the first of its kind to include two large and ancestrally distinct population cohorts. Proteins play a critical role in cellular function, and changes in protein mechanisms—often regulated by DNA variations—can lead to disease. DNA-to-protein mapping could help explain differences in the rates of some diseases in the two groups and help researchers understand some health disparities.

The study appears in Nature Genetics.

Researchers have been mapping the molecular roots of human diseases for decades through so-called genetic mapping studies. The best known is the genome-wide association study (GWAS). A GWAS typically links variations in DNA to disease risk by analyzing the DNA of subjects—often tens or hundreds of thousands of individuals at a time—along with their history of a given disease. This uncovers statistical associations linking the disease to specific DNA variations.

Missing from the GWAS picture: Most of the disease-linked DNA variants identified by GWAS analysis do not lie within protein-coding genes. Researchers therefore assumed that many—even most—disease-linked DNA variants affect proteins indirectly, by regulating one or more steps in the gene-to-protein production process, thereby altering protein levels. Linking diseases directly to proteins, researchers can better understand the roots of disease—and also identify protein targets for disease prevention and treatments.

“This relatively new kind of mapping study provides a wealth of information that will allow researchers to test for potential links of proteins on various types of health outcomes—risk of cancers, heart disease, severe COVID—and help to develop or repurpose therapeutic drugs,” says study senior author Nilanjan Chatterjee, Ph.D., Bloomberg Distinguished Professor in the Department of Biostatistics at the Bloomberg School.

To demonstrate the DNA-protein mapping’s application, the researchers used it to identify an existing rheumatoid arthritis drug as a plausible new treatment for the common joint-pain disorder known as gout.

The study was a collaboration between Chatterjee’s team and the research group of Josef Coresh, MD, George W. Comstock Professor in the Bloomberg School’s Department of Epidemiology and one of the paper’s co-authors, and colleagues at several institutions.

The analysis covered 7,213 Americans of European ancestry and 1,871 African Americans in the long-running Atherosclerosis Risk in Communities (ARIC) study, headed by Coresh; and 467 African Americans from the African American Study of Kidney Disease and Hypertension (AASK). In both of these studies, the research teams had sequenced the genomes of the participants and recorded bloodstream levels of thousands of distinct proteins.

For their mapping study, Chatterjee’s team analyzed the ARIC and AASK genomic data to identify more than two thousand common DNA variations that lie close to the genes encoding many of these proteins and correlate with the proteins’ bloodstream levels.

“The value of knowing about these DNA variants that predict certain protein levels is that we can then examine much larger GWAS datasets to see if those same DNA variants are linked to disease risks,” Chatterjee says.

Using a European-American dataset, they found that it predicted several proteins whose levels would influence the risk of gout or bloodstream levels of the gout-related chemical urate. These proteins included the interleukin 1 receptor antagonist (IL1RN) protein, which appears to lower gout risk—a finding that suggests the existing rheumatoid arthritis drug anakinra, which mimics IL1RN, as a plausible new therapy for gout.

Having data from both white and Black Americans allowed the researchers to map protein-linked DNA variants more finely than if they had been restricted to one or the other. The African-ancestry models generated in the study will allow future analyses of how different populations’ genetic backgrounds might contribute to differences in disease rates.

“We know that prostate cancer risk, for example, is higher in African American men, so in principle, one could combine prostate cancer GWAS data on African Americans with our protein data to identify proteins that contribute to elevated prostate cancer risk in that population,” Chatterjee says.

The team has made its datasets and protein prediction models publicly available online so researchers can use the resource. Chatterjee’s team and collaborators anticipate doing further studies in the ARIC and AASK cohorts, as well as in other diverse cohorts, to gather information on proteins and other factors that influence the DNA-to-disease chain of causality.

Related article:

Protein Pilfered from Cancer Cells Thwarts Immune Attack

Study Nearly Doubles Known Cancer-Linked Mutational Signatures

Read more

PrevPreviousIn Vivo Gene Therapy Cures Infertility in Mice
NextSweat sensor makes strides in detecting infection indicatorsNext

LATEST Blogs

Breakfast and health problems

Skipping Breakfast May Increase a Child’s Risk of Psychosocial Health Problems

September 7, 2022
James webb telescope

NASA’s Webb Space Telescope Captures a Cosmic Tarantula

September 7, 2022

Worse Than Smoking – Bad Sleep Can Worsen Lung Disease

August 31, 2022
Nanotechnology

Dr. Muhammad Adeel Addressed the International Con-ference as keynote speaker

August 23, 2022
Benefits of Mushrooms

Top 10 Health Benefits of Mushrooms, the Ultimate Superfood

August 18, 2022

New Way Invented To Produce Oxygen on Mars for Future Explorers

August 18, 2022

Evidence of Unprecedented Modern Sea-Level Rise Found in Ancient Caves

August 18, 2022

Research Shows Salt Substitutes Lower Risk of Heart Attack/Stroke and Death

August 13, 2022
covid symptoms

Hair Loss and Sexual Dysfunction Join Fatigue and Brain Fog in List of Long COVID Symptoms

August 13, 2022
protein

Most People Are Eating Too Much Protein – And It Has Serious Consequences

August 13, 2022

Categories

  • Scientific Blogs
  • Infinity Explorer
  • Traveler Book
  • Life Around

If you have tried to make a difference and you believe you deserve to be acknowledge, then please submit your story to us

Subscribe

Virtual Green Innovation Hub (VGI-H) is an emerging platform for young researchers which works as a bridge between You and the society.

Useful Links

Home
About us
Blogs

Subscribe Now

Don’t miss our future updates! Get Subscribed Today!

Copyright ©2022 Virtual Green Innovation Hub. All Rights Reserved.

Don’t miss our future updates. Get Subscribed Today!