• Home
  • About Us
    • Member Directory
    • Contact Us
  • Blogs
    • Scientific Blogs
      • Technology
      • Environment
      • Health
    • Infinity Explorer
    • Traveler Book
    • Life Around
  • Publication
  • Scientific Advisory
  • Project
    • Future Projects
    • Ongoing Projects
    • Previous Projects
  • Services
    • Language Programs
    • Latest Software
    • Environmental Consultancy
    • Internship
    • Exercise
  • Career
    • Masters
    • PHDs
    • Postdoctorals
    • Travel Grants
    • Others

‘Coarse-graining’ can help scientists understand complex microbial ecosystems, theory suggests

‘Coarse-graining’ can help scientists understand complex microbial ecosystems, theory suggests

Share:

Twitter
Tweet
LinkedIn
Share
Facebook
fb-share-icon
WeChat
Follow by Email
Hardin Bitsky

Hardin Bitsky

Mr. Hardin, a future doctor of pharmacy, provides services as a content writer for scientific and technical niches.

Microbial communities shape our health and the health of our planet. Some are familiar to humans, like the microbes that reside in the gut, known as our microbiome. Others keep fermenting along mostly under the radar.

When many microbes live together and grow in interrelated ways, it can be hard to identify the functional role of any individual player. But some complex microbial ecosystems could actually be easier to understand than those with fewer players, according to a new study in Physical Review X led by theoretical physicist Mikhail Tikhonov at Washington University in St. Louis.

“Some real-life microbial ecosystems are well-described by models that are surprisingly simple, given the complexity under the hood,” said Tikhonov, assistant professor of physics in Arts & Sciences. The new modeling framework that he developed with graduate student Jacob Moran provides a precise quantitative definition for the elusive notion of “coarse-grainability” and suggests that some of its properties might not be intuitive.

“Put simply, coarse-graining means omitting details, and we say that is fine if it doesn’t change the outcome of a specified experiment,” Tikhonov said.

“Note that this definition links coarse-grainability to a choice of an experiment, and that’s actually important,” he said. “We argue that coarse-grainability fundamentally depends on which aspect of the ecosystem you care about. We show that the exact same ecosystem can be readily coarse-grainable if you’re interested in one property, whereas for another, you may need to know all the details.”

This new work offers a path toward theoretical understanding of which ecosystem properties, and in which environmental conditions, might be predictable by coarse-grained models. The approach could help biologists who want to study microbes in their own messy, real-life conditions—that is, diverse communities in complex environments—instead of trying to isolate them in a petri dish.

“With this study, we’ve demonstrated that a high diversity of strains, while nominally more complex, may in fact facilitate coarse-grainability and that, at least within our model, coarse-grainability is maximized when a community is assembled in its ‘native’ environment,” Tikhonov said.

You may like to read:

Video Of Bloody-Belly Comb Jelly Pooping Could Be World-First Footage

Alpha-Gal Syndrome: How A Tick’s Saliva Can Make You Allergic To Meat

PrevPreviousNanobiotics: Machine learning model predicts how nanoparticles interact with proteins
NextHow mental health and disability may sway judgment in the justice systemNext

LATEST Blogs

Breakfast and health problems

Skipping Breakfast May Increase a Child’s Risk of Psychosocial Health Problems

September 7, 2022
James webb telescope

NASA’s Webb Space Telescope Captures a Cosmic Tarantula

September 7, 2022

Worse Than Smoking – Bad Sleep Can Worsen Lung Disease

August 31, 2022
Nanotechnology

Dr. Muhammad Adeel Addressed the International Con-ference as keynote speaker

August 23, 2022
Benefits of Mushrooms

Top 10 Health Benefits of Mushrooms, the Ultimate Superfood

August 18, 2022

New Way Invented To Produce Oxygen on Mars for Future Explorers

August 18, 2022

Evidence of Unprecedented Modern Sea-Level Rise Found in Ancient Caves

August 18, 2022

Research Shows Salt Substitutes Lower Risk of Heart Attack/Stroke and Death

August 13, 2022
covid symptoms

Hair Loss and Sexual Dysfunction Join Fatigue and Brain Fog in List of Long COVID Symptoms

August 13, 2022
protein

Most People Are Eating Too Much Protein – And It Has Serious Consequences

August 13, 2022

Categories

  • Scientific Blogs
  • Infinity Explorer
  • Traveler Book
  • Life Around

If you have tried to make a difference and you believe you deserve to be acknowledge, then please submit your story to us

Subscribe

Virtual Green Innovation Hub (VGI-H) is an emerging platform for young researchers which works as a bridge between You and the society.

Useful Links

Home
About us
Blogs

Subscribe Now

Don’t miss our future updates! Get Subscribed Today!

Copyright ©2022 Virtual Green Innovation Hub. All Rights Reserved.

Don’t miss our future updates. Get Subscribed Today!