• Home
  • About Us
    • Member Directory
    • Contact Us
  • Blogs
    • Scientific Blogs
      • Technology
      • Environment
      • Health
    • Infinity Explorer
    • Traveler Book
    • Life Around
  • Publication
  • Scientific Advisory
  • Project
    • Future Projects
    • Ongoing Projects
    • Previous Projects
  • Services
    • Language Programs
    • Latest Software
    • Environmental Consultancy
    • Internship
    • Exercise
  • Career
    • Masters
    • PHDs
    • Postdoctorals
    • Travel Grants
    • Others

High-Performance Nanomaterial to Purify Mining Wastewater

High-Performance Nanomaterial to Purify Mining Wastewater

Share:

Twitter
Tweet
LinkedIn
Share
Facebook
fb-share-icon
WeChat
Follow by Email
Hardin Bitsky

Hardin Bitsky

Mr. Hardin, a future doctor of pharmacy, provides services as a content writer for scientific and technical niches.

Antimony (Sb) pollution is a serious environmental concern in mining-affected regions. The use of nanoparticles to extract such metallic species has piqued the interest of researchers in the last few decades. A recent study available in the journal Science of The Total Environment focused on developing a reduced graphene oxide/bimetallic nanoparticle composite for the simultaneous removal of Sb (III) and Sb (V) from mining wastewater.​​​​​​​

Environmental Impacts of Antimony (Sb) Contamination

Antimony (Sb) is a heavy metallic element that is widely utilized as a polymer catalyst, acrylic dye, and alloy in a variety of industries. Because of this rapidly increasing consumption, Sb is extensively procured both directly and indirectly through various mining projects, resulting in Sb contamination of groundwater resources in many mining communities.

Increased Sb levels are a concern since Sb may cause severe environmental damage at elevated amounts, as well as health problems in both animals and humans. As a result, strategies for efficiently treating Sb containments in mining wastewater are necessary.

Current Methods for Sb Removal and their Limitations

Adsorption, membrane processes, solvent separation, reduction precipitation, and electrochemical treatment are now the most used procedures for removing dangerous metal(loid)s such as Sb. However, due to its reusability, ease of use, and high functionality, adsorption is often regarded as one of the most successful metalloid removal processes.

Due to its large specific surface area, graphene is an excellent option for Sb adsorption.

Bimetal oxides have the potential to be good adsorbents as well. For instance, Fe-Ni bimetallic nanoparticles retain not only the high affinity and oxidation characteristics of their parental Fe oxide, but also the catalytic capabilities of Ni, and, more crucially, tend to encourage adsorption synergistically rather than additively. However, one of the outstanding challenges with metallic nanoparticles is their proclivity for coagulation.

Integration of Graphene with Metallic Nanoparticles

Recently, researchers attempted to merge graphene with metallic nanoparticles to overcome both problems at the same time. A hybrid Fe3O4/GO material was successfully produced and employed for oxidizing and adsorbing Sb (III) to solve the problematic issue of adsorption from graphene oxide.

While the substances were encouraging in terms of Sb adsorption capacity, they were all manufactured using conventional wet chemistry methods. Secondary environmental damage was induced due to the high toxicity of the catalysts used in the fabrication process, limiting the broad-scale implementation of the composite nanomaterials.

Phyto-synthesized Graphene Oxide/ Bimetallic Nanoparticles

Using biologically produced reduced graphene oxide/bimetallic nanoparticles (rGO-Fe/Ni NPs), the researchers hoped to concurrently remove two prevalent Sb species, Sb (III) and Sb (V), from mining effluent. The removal efficacy of the generated hybrid was first assessed after exposure to solutions containing just Sb (III) or Sb (V), and then to combinations containing both Sb (III) and Sb (V).

Following that, sophisticated characterizations were employed to track changes in the surface characteristics of rGO-Fe/Ni NPs before and after Sb contact to present proof for the proposed removal process. Finally, rGO-Fe/Ni NPs were used practically to remove Sb and other heavy metals from mining waste.

Important Findings of the Study

This research found that by employing rGO-Fe/Ni, both primary Sb constituents could be eliminated from mine effluent simultaneously. In a procedure including both adsorption and oxidation, the hybrid rGO-Fe/Ni nanoparticles outperformed the individual components in terms of Sb (III) and Sb (V) extraction efficiency.

Sb (III) elimination was substantially more effective in the pH range of 5-9, but Sb (V) elimination was higher under acidic settings. The adsorption mechanism revealed that the elimination of Sb (III) and Sb (V) involves both physical and chemical adsorption. XPS and oxidation dynamics revealed that Sb (III) elimination also involves oxidation.

The reduced graphene oxide/bimetallic nanoparticles were also effective in eliminating Sb and a range of other toxic substances from mining effluent, showing that the material has a high potential for the practical cleanup of heavy metal polluted wastewaters.

Related article:

What Does Sustainable Science Look Like to Nano Researchers?

PostDoc position in theory and modelling of quantum transport in low-dimensional nanomaterials

PrevPreviousTapping Mode AFM Reveals Moiré Modulation of hBN Van Der Waals Potential
NextChina announces its new flagship space telescope missionNext

LATEST Blogs

Breakfast and health problems

Skipping Breakfast May Increase a Child’s Risk of Psychosocial Health Problems

September 7, 2022
James webb telescope

NASA’s Webb Space Telescope Captures a Cosmic Tarantula

September 7, 2022

Worse Than Smoking – Bad Sleep Can Worsen Lung Disease

August 31, 2022
Nanotechnology

Dr. Muhammad Adeel Addressed the International Con-ference as keynote speaker

August 23, 2022
Benefits of Mushrooms

Top 10 Health Benefits of Mushrooms, the Ultimate Superfood

August 18, 2022

New Way Invented To Produce Oxygen on Mars for Future Explorers

August 18, 2022

Evidence of Unprecedented Modern Sea-Level Rise Found in Ancient Caves

August 18, 2022

Research Shows Salt Substitutes Lower Risk of Heart Attack/Stroke and Death

August 13, 2022
covid symptoms

Hair Loss and Sexual Dysfunction Join Fatigue and Brain Fog in List of Long COVID Symptoms

August 13, 2022
protein

Most People Are Eating Too Much Protein – And It Has Serious Consequences

August 13, 2022

Categories

  • Scientific Blogs
  • Infinity Explorer
  • Traveler Book
  • Life Around

If you have tried to make a difference and you believe you deserve to be acknowledge, then please submit your story to us

Subscribe

Virtual Green Innovation Hub (VGI-H) is an emerging platform for young researchers which works as a bridge between You and the society.

Useful Links

Home
About us
Blogs

Subscribe Now

Don’t miss our future updates! Get Subscribed Today!

Copyright ©2022 Virtual Green Innovation Hub. All Rights Reserved.

Don’t miss our future updates. Get Subscribed Today!